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ABSTRACT 

A minimal complexity model of both the local and remote stationary responses of the 

atmosphere to tropical heating anomalies is described and demonstrated. Two levels are recast as 

baroclinic and barotropic components with thermal advection in the tropics neglected. The model 

is linearized about some idealized and realistic background wind fields and forced with a 

localized heating for illustration. In the tropics, the baroclinic responses are familiar from the 

Matsuno-Gill model; these excite barotropic responses by advective interactions with vertical 

background wind shear. The barotropic signals are in turn transmitted to high latitudes only in 

the presence of barotropic background westerly winds. For an El Niño like equatorial heating, 

the barotropic response has anticyclones to the north and south of the heating reinforcing 

(opposing) the anticyclonic (cyclonic) baroclinic gyres in the upper (lower) troposphere. With 

realistic background flows, the model reproduces the hemispheric asymmetry of ENSO 

teleconnections. Further experiments show that the winter hemisphere is favored mainly because 

the summer hemispheric subtropical jet is farther from the heating latitude, not because it is 

weaker, suggesting that the summer hemisphere can still host robust stationary Rossby waves if 

the heating occurs in the vicinity of the jet. As an example, we show that summer heating over 

the Atlantic warm pool (AWP) can have a profound impact on the summer climate of the North 

America and Europe. 
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1. Introduction 

Originally developed by Matsuno (1966) and Gill (1980), the so-called Matsuno-Gill model 

is widely used and perhaps the simplest dynamic model for heat-induced tropical circulations of 

the atmosphere. Its simplicity stems from assuming a purely baroclinic vertical structure (Davey 

and Gill 1987), corresponding to a heat source (or sink) at the mid-troposphere. A heat source at 

the equator produces a damped Kelvin wave along the equator east of the heat source, and a 

damped Rossby wave that forms to the northwest and southwest of the heat source. These 

damped baroclinic Kelvin and Rossby waves depicted by the Matsuno-Gill model are the 

cornerstones for our understanding of heat-induced atmospheric circulations in the tropics.  

However, the Matuno-Gill model completely fails outside of the tropics. As demonstrated by 

Hoskins and Karoly (1981) and by Horel and Wallace (1981), a diabatic-heating anomaly 

associated with El Niño can also excite a stationary barotropic Rossby wave train (also referred 

to as heat-induced barotropic teleconnection pattern, or simply teleconnection in this paper), 

whose spatial pattern is somewhat similar to the intrinsic mode of mid-latitude variability known 

as the Pacific-North American (PNA) pattern (Lau 1981; Wallace and Gutzler 1981; Straus et al. 

2007). As summarized in Klein et al (1999), the ENSO teleconnections cause significant climatic 

anomalies virtually all over the globe, notably the North Pacific Ocean, North America and the 

tropical North Atlantic Ocean. The limitation of the Matuno-Gill model is clear because the 

ENSO teleconnection patterns are barotropic (or equivalent barotropic). Branstator (1983) 

showed that a non-divergent barotropic vorticity model linearized about a zonal jet is the 

simplest model for understanding the ENSO teleconnections. However, it is obvious that the 

barotropic vorticity model has no skill in simulating the ENSO-forced baroclinic response within 
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the tropics. Furthermore, the barotropic vorticity model alone cannot address properly the 

mechanisms involving the forcing of barotropic teleconnection patterns.  

Multi-level models and even full atmospheric general circulation models (AGCMs) can be 

used to compute responses to heating with greater generality, but their complexity makes it 

difficult to gain insight into fundamental processes. This study describes an intermediate 

approach: a model of minimal complexity that can simulate both the heat-induced tropical 

response and its teleconnections to high latitudes. Specifically, we present a two-mode 

(barotropic and baroclinic) model that captures three fundamental dynamic processes: 1) a heat-

induced baroclinic mode as described by the Matsuno-Gill model (Gill 1980); 2) a barotropic 

Rossby wave source that resulting from the conversion of the heat-induced baroclinic mode into 

barotropic anomalies; and 3) barotropic teleconnections to high latitudes as in the barotropic 

stationary wave model of Branstator (1983). In the following sections, we first derive the 

governing equations and discuss how the new model is distinguished from some of the 

previously used models. Then, after presenting the method of solution, we discuss the model 

solutions under some idealized and realistic background wind fields to better understand the 

effect of different basic states and also the mechanisms involving the generation of stationary 

barotropic Rossby wave patterns. Finally, some potential applications and limitations of the new 

model are discussed.  

 

2. Description of the model equations and the method of solution 

a. Model equations 

The present model is a steady-state two-level (or two-mode) spherical-coordinate primitive 

equations model, linearized about a specified background flow. The governing equations for 



such two-level model can be derived from the vector form of the horizontal momentum equation, 

which can be written as 
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where v is the horizontal wind vector; ξ is the relative vorticity; φ is the geopotential; f is the 

Coriolis parameter; r is the linear momentum damping coefficient; and A is the momentum 

diffusion coefficient. Note that vertical advection is neglected in (1). As noted in Robert (1966) 

and Bourke (1972), vectors such as horizontal wind fields have multiple values at the poles, thus 

(1) is not well suited for studying atmospheric motions on the globe. Therefore, as typically done 

in other global models, the horizontal wind fields are represented in terms of the vertical 

component of relative vorticity and the horizontal divergence. Thus, by taking the curl and 

divergence to (1), the equations for relative vorticity and horizontal divergence are obtained: 
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where λ and θ represent longitude and latitude, respectively, u and v denote the zonal and 

meridional flow components, respectively; ψ and χ denote the stream function and velocity 

potential, respectively; a is the radius of earth; and Ω is the rotational rate of the earth. The 

quantities u and v appearing in (2)-(3) are not prognostic variables but to be replaced using the 

following diagnostic relations: 
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All dependent variables appearing in (2)-(5) are now separated into the background (or basic 

state) and anomaly components: 
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Inserting (8) into (2)-(5) and ignoring products of primed terms, the linearized vorticity equation 

and divergence equation are obtained. After dropping the prime, this linearized vorticity equation 

becomes 
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Similarly, the linearized divergence equation becomes  
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As mentioned earlier, the current model is designed to simulate a steady-state response of the 

atmosphere to heating anomalies. Thus, the time derivative terms appearing in (9)-(10) are 

dropped. Since the model atmosphere consists of two levels (centered at 250 mb and 750 mb), it 

is also convenient to separate the variables into the barotropic and baroclinic components: 

)(5.0 21 YYY += ,                                                           (11) 

)(5.0ˆ
12 YYY −= ,                                                           (12) 

where Y stands for χψ  ,  and φwith subscripts 1 and 2 denoting values at the upper (250 mb) and 

lower (750 mb) levels, respectively. Note that the baroclinic components are defined in such a 
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way that their signs correspond to those at the lower level following the convention used in Gill 

(1980).  

By adding the vorticity equation (9) of the upper and lower levels, we obtain the barotropic 

vorticity equation: 
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where r0 is the linear momentum damping coefficient for barotropic motion; A0 is the momentum 

diffusion coefficient for barotropic motion; and ψF  represents the vorticity tendency terms that 

involve interactions between the vertical background shear and baroclinic wind anomalies:  
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The vertically integrated (i.e., barotropic) divergence is set to zero as in other simple models 

(Held and Suarez 1978; Schopf and Suarez 1988), and thus the associated term (i.e, 

χθ 2sin2 ∇Ω ) disappears in (13).  

Similarly, by subtracting the vorticity equation (9) of the upper level from that of the lower 

level, we obtain the baroclinic vorticity equation: 
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where r1 is the linear momentum damping coefficient for baroclinic motion; and A1 is the 

momentum diffusion coefficient for baroclinic motion; and  represents the vorticity tendency 

terms involving interactions between the vertical background wind shear and barotropic wind 

anomalies:  

ψ̂F
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Although the barotropic divergence is set to zero here, the baroclinic divergence cannot be 

neglected due to its importance over the tropics. Thus, the baroclinic divergence equation can be 

derived by subtracting the divergence equation (10) of the upper level from that of the lower 

level: 

( ) ( )

( ) ,ˆˆˆˆˆ

ˆˆsin2ˆcosˆcosˆˆ
cos
1

ˆ
4

1
2

1
2

22222

χχχφ

ψθθψθ
θ

ψ
λθ

FArvVuU

a
uuUvV

a

+∇+∇−=++∇+

⎟
⎠
⎞

⎜
⎝
⎛ −∇Ω−⎥⎦

⎤
⎢⎣
⎡ Ψ∇+∇

∂
∂

−Ψ∇+∇
∂
∂

−
   (17) 

where  represents the divergence tendency terms involving interactions between the vertical 

background wind shear and barotropic wind anomalies:  
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Finally, the equation for baroclinic geopotential ( ) can be written as φ̂

Qcg −=∇+ χφγ ˆˆ 22 ,                                                          (19) 

where γ is the thermal damping coefficient; cg is the internal gravity wave speed; and Q is the 

diabatic heating rate. Note that (19) is in the same form as originally used in Gill (1980); thus, it 

can be derived by using continuity equation, hydrostatic equation, ideal gas law, and linearized 

thermodynamic equation. A detailed derivation of this equation is well documented in Kleeman 

(1989), thus it is not repeated here. Nevertheless, it is important to point out that in deriving (19), 

we use the so-called weak temperature gradient approximation - the terms involving the 

horizontal advection of baroclinic geopotential gradient (or mid-tropospheric temperature 

gradient) are neglected. Those terms include barotropic geopotential (φ ), which never appears in 
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other equations. Therefore, by dropping those terms, we can also avoid complications arising 

from introducing an extra equation for φ . According to observational and modeling studies, the 

heat-induced teleconnection patterns are largely barotropic, while the baroclinic response is 

largely limited within the tropics (e.g., Hoskins and Karoly 1981; Wallace and Gutzler 1981). 

Therefore, the fact that the simplified thermodynamic equation (19) is known to be very effective 

for the heat-induced baroclinic motion in the tropics (e.g., Neelin 1988) justifies the using of (19) 

instead of more complex forms. 

Specifying the basic states and the heating anomaly, (13)-(19) are in a closed form (note that 

vu  , ( vu ˆ ,ˆ ) are expressed in terms of ψ ( χψ ˆ ,ˆ ) via (4)-(5)). In the next section, we present a 

numerical method to solve the governing equations (13)-(19).   

Before we move on, it is useful to discuss how our model is distinguished from other simple 

and intermediate complexity models. One of these is the model developed by Wang and Li 

(1993) for modeling the annual cycle and short-term climate fluctuations in the tropics. Zebiak 

(1986) and Davey and Gill (1987) also expanded the Matsuno-Gill model by considering low-

level moisture convergence, and by explicitly solving a moisture budget equation, respectively. 

However, none of these tropical models (based on Matsuno-Gill type dynamics) can reproduce 

the ENSO teleconnections to high latitudes. Perhaps the closest relative of the current model is 

the multi-level linear baroclinic model (LBM) used by Hoskins and Simmons (1975) and others 

(e.g., Webster 1981; Kasahara and da Silva Dias 1986; Branstator 1990; Ting and Held 1990; Jin 

and Hoskins 1995; Watanabe and Kimoto 2000; Watanabe and Jin 2004). Although its 

complexity varies in different model versions, the LBM is virtually an AGCM, but linearized 

about observed (or idealized) basic states. In that sense, our model may be referred to as a 

stripped-down version of the dry LBM (Watanabe and Kimoto 2000). In particular, the 
 8



simplified thermodynamic equation (19) is the main component that distinguishes our model 

from other more complex LBMs. 

 

b. Method of solution  

The numerical method used to solve the governing equations (13)-(19) is similar to the 

technique used by Branstator (1983). More specifically, the heating anomaly Q and the 

prognostic variables ,ˆ,ˆ, χψψ  and  appearing in (13)-(19) are expressed as truncated series of 

spherical harmonics: 
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where Y stands for φχψψ ˆ ,ˆ ,ˆ ,  and Q; and is the associated Legendre function. Inserting (20) 

into (13)-(19), multiplying by a complex conjugate spherical harmonic, , and integrating 

over the globe yield a set of linear equations, which can be solved by using a standard Gaussian 

elimination algorithm. The basic state variables, such as 

m
nP

λmim
n eP ′−′
′

Ψ  and Ψ̂ , and their derivatives are 

taken by representing them with the same form as in (20), and the associated integrals are 

evaluated using Gaussian quadrature. In order to calculate the matrix elements of the governing 

equations, we use the SPHEREPACK 3.0 (Adams and Swarztrauber 1999) to evaluate the 

spherical harmonics. For all cases in this paper, we use triangular 18 truncations or simply T18 

(i.e., M=N=18), but we find that T14 is quite sufficient for all the cases. For more details on the 

solution method, see Grose and Hoskins (1979) and Branstator (1983). 

 

3. Some model experiments with idealized basic states 
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In this section, as a reference for understanding experiments with more realistic basic states, 

we first investigate how the new model simulates the local and teleconnection responses to a 

tropical heating anomaly under some idealized basic states. For all experiments, the internal 

gravity wave speed, cg, is set to 60 ms-1, which is a typical value used in previous studies 

(Kleeman 1989; Zebiak 1986). The thermal damping coefficient, γ, is set to (2 days) –1 following 

Gill (1980), while the barotropic and baroclinic horizontal mixing coefficients, A0 and A1, are 

both set to 106 m2s-1. The two linear momentum damping coefficients, r0 and r1, are set to (20 

days)-1 and to (10 days)-1, respectively. Neelin (1988) and Lin et al. (2008) discuss how different 

choices of the three baroclinic parameters, cg, r1 and γ affect the solution of the Matuno-Gill 

model.  

We first consider a case with zero background flow (Case-1: 0ˆˆ ==== VVUU ). In this 

case, the barotropic vorticity equation (13) is decoupled from other three equations because the 

interactions between the vertical background wind shear and baroclinic wind anomalies are not 

allowed (i.e., ψF = 0 in (14)), thus the barotropic motion is not forced. Accordingly, the 

governing equations of the model are reduced to a special case of the Matuno-Gill model: 
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Qcg −=∇+ χφγ ˆˆ 22 ,                                                         (23) 

where  and  are to be expressed in terms of û v̂ ψ̂  and χ̂  using (4) and (5). In the next example, 

we use a purely barotropic background flow of longitudinally invariant solid body rotation 
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(Case-2: θcosoUU = ; 0ˆˆ === VVU ) with its maximum speed set to oU =25 ms-1. By 

inspecting (13) and (14), it becomes obvious that the barotropic vorticity equation is still 

decoupled from the rest of equations as in the zero background flow case (Case-1). The only way 

to excite the barotropic motion is through the interactions between the vertical background shear 

and baroclinic wind anomalies (i.e., ψF ≠0 in (14)). Therefore, we can conclude that the vertical 

background wind shear is a critical factor that determines the amplitude of teleconnection to high 

latitudes, consistent with Kasahara and Silva Dias (1986) and Wang and Xie (1996). 

Consequently, the next case is a purely baroclinic background flow of longitudinally invariant 

solid body rotation (Case-3: θcosˆˆ
oUU = ; 0ˆ === VVU ) with its maximum speed of =-15 

ms-1. In this case, some barotropic motions can be excited in the tropics. However, we shall see 

that the barotropic vorticity source (

oÛ

ψF ) is merely balanced by Coriolis and damping terms such 

that the response is largely confined in the tropics near the heating. Finally, the next case is more 

like the real atmosphere where both the barotropic and baroclinic mean flow components exist 

(Case-4: θcosoUU = ; θcosˆˆ
oUU = ; 0ˆ ==VV ) where oU =25 ms-1 and =-15 ms-1. The 

values for 

oÛ

oU  and  are chosen to mimic the winter hemisphere, with typical mean wind 

speeds of 40 ms-1 and 10 ms-1 for the upper and lower troposphere, respectively (e.g., Pexoto and 

Oort 1992). The details of the four experiments are summarized in Table 1.  

oÛ

In all four cases considered, a Gaussian-shaped heating anomaly is prescribed at the equator 

roughly corresponding to the heating anomaly associated with El Niño: 
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where λo= 160oW, =25o, and =5o. Qo is set equal to 2.5×10-2 W kg-1, which is equivalent to 

2.15 K day-1. Some numerical problems may arise when the spectral harmonics are used to 

represent fields with sharp spatial gradients such as (24). These problems, known as Gibbs 

oscillations, produce small amplitude ripple patterns in the vicinity of the Gaussian-shaped 

heating source. In order to suppress the Gibbs oscillations, a 2D isotropic filter is applied to the 

spherical harmonic form of (24) as suggested by Navarra et al (1994).  

λL θL

Figure 1 shows the baroclinic geopotential and wind (vector plot) anomalies for (a) Case-1 

and (b) Case-2. Similarly, Fig. 2 shows the rotational components (baroclinic stream function 

and rotational wind anomalies), whereas Fig. 3 shows the divergent components (baroclinic 

velocity potential and divergent wind anomalies). Comparing the two cases, we find that an 

inclusion of the barotropic background wind (Case-2) modifies the Matsuno-Gill response (Case-

1) in such a way that the damped Rossby wave nodes are shifted significantly to the east (i.e., in 

the downstream direction). The Rossby gyres are now directly to the north and south of the 

equatorial heating source, which is centered at 160oW. The eastward shift of the baroclinic 

anomalies in Case-2 can be thought as a Doppler shift via the barotropic background westerly 

wind. Other noticeable changes include a slight weakening of the divergent flow component 

(Fig. 3b), and a strengthening of the off-equatorial cyclonic vortex pair (Fig. 2b). However, the 

mechanism that triggers the barotropic flow anomalies is still missing in Case-2 (i.e., ψF = 0 in 

(14)), thus the core dynamics of the heat-induced flow anomalies under the influence of the 

purely barotropic background flow are still governed by the original Matsuno-Gill model (Case-

1). 
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The baroclinic components of the solution for Case-3 and Case-4 are very similar to those for 

Case-1 and Case-2, respectively (not shown). In other words, baroclinic background - barotropic 

anomaly interactions (i.e.,  and  in (15) and (17)) have little impact on the baroclinic 

response. Furthermore, the differences between Cases-1 and -2 (and between Case-3 and -4, not 

shown) are small, compared to the large differences in the barotropic part we shall see below, 

indicating that the baroclinic impacts of barotropic background - baroclinic anomaly interactions 

(i.e., advection terms in the LHS of (15) and (17)) are also fairly weak. Therefore, we can 

conclude that even in the presence of moderate background flow the original Matsuno-Gill 

model (see (21)-(23)) still mainly governs the heat-induced baroclinic vorticity and divergence 

anomalies. 

ψ̂F χ̂F

In contrast to these weak background effects on the baroclinic part of the response, the 

barotropic part is profoundly impacted by background-anomaly interactions. Figure 4 shows the 

barotropic components of stream function and rotational wind (vector plot) anomalies for (a) 

Case-3 and (b) Case-4. In both cases, the vertical background shear - baroclinic anomaly 

interactions ( ψF ) play a very important role of forcing the barotropic motion near the heat 

source. It is also apparent that the barotropic response is to form an anticyclonic vortex pair to 

the north and south of the heating source. Since the baroclinic response has a cyclonic vortex 

pair in the same location (see Fig. 2a), the cyclonic vortex pair in the lower level is weakened, 

while the anticyclonic vortex pair in the upper level is strengthened as shown in Fig. 5 for Case-3 

(see (12) for our sign convention). This is quite an interesting result because this tendency of the 

more (less) organized response in the upper (lower) troposphere during a typical El Niño has 

been recognized for quite some time but without any clear dynamic explanation.  
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With no barotropic background flow (Case-3), the forcing terms ( ψF ) in (13) must be locally 

balanced by Coriolis and damping terms, because all four advection terms in the LHS of (13) are 

zero; thus, the barotropic anomalies are largely confined within the tropics near the heating 

source in Fig. 4a. In Case-4, on the other hand, the barotropic anomalies are transmitted to high 

latitudes (Fig. 4b) because terms involving the barotropic background wind - barotropic anomaly 

interactions (i.e., four advection terms in the LHS of (13)) permit a barotropic stationary Rossby 

wave solution. Therefore, the net conclusion is that both the barotropic and baroclinic 

background wind fields are required to radiate barotropic teleconnections to high latitudes. To 

some extents, the barotropic flow pattern shown in Fig. 4b has some similarity to the ENSO 

teleconnection patterns in boreal winter (Wallace and Gutzler 1981). 

A commonly used interpretation for the difference between the Case-3 and Case-4 (Fig. 4) is 

that since barotropic Rossby waves have westward intrinsic phase velocities, a steady forcing in 

a resting barotropic background state cannot stimulate stationary barotropic Rossby waves - a 

westerly background flow is needed to balance the intrinsic phase velocity (e.g., Holton 1992). 

This can be easily demonstrated by using the dispersion relationship for barotropic Rossby wave 

in an infinite domain (e.g., Holton 1992):  

22 lk
Uc o +

−=
β ,                                                          (25) 

where c  is the phase speed of barotropic Rossby wave, U  is barotropic background wind speed, 

β is the northward gradient of the vertical planetary vorticity, and k and l are zonal and 

meridional wave numbers, respectively. This equation clearly shows that U > 0 in order for a 
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stationary barotropic waves to exist (i.e., c = 0). We can also learn from this equation that the 

wavelength of barotropic stationary Rossby wave should increase as U  increases.  

A natural next question is why there are no baroclinic teleconnections to high latitudes in our 

model (see Fig. 2b). The dispersion relationship for baroclinic Rossby wave (e.g., Holton 1992) 

can be written as 

222 2
ˆ

−++
−=

d
o Rlk

Uc β ,                                                      (26)                        

where  is the phase speed of baroclinic Rossby wave and  is the baroclinic Rossby 

deformation radius. A stationary baroclinic Rossby wave can exist only if 

ĉ dR

25.00 dRU β<< . 

Using typical values of m-1s-1 and km in the mid-latitude (~ 30o), the critical 

barotropic background flow speed is about 9.9 ms-1. Since the typical value for 

11102 −×=β 310=dR

U  in the mi-

latitude is about 15 ~ 30 ms-1, we can argue that baroclinic Rossby waves propagate too slowly 

to become stationary in the mid-latitude.  

Some sensitivity experiments were performed for Case-4 using different values for the five 

tunable damping coefficients, namely r0, A0, r1, A1 and γ. For reasonable ranges of these values, 

reducing r0 increases the amplitude of barotropic solution monotonically without affecting the 

baroclinic solution. But, when r1 is reduced, both the baroclinic and barotropic solution 

components are amplified. These results are consistent with our findings that the heat-induced 

baroclinic motion, through its interactions with the vertical background shear, forces the 

barotropic motion, but the feedback from the barotropic to baroclinic motion is not significant. 

Additionally, when γ is decreased from (2 days) –1 to (10 days) –1, the baroclinic flow anomalies 
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tend to become more intense and to affect broader areas, but the overall structure of model 

solution remains unchanged consistent with Neelin (1988). 

 

4. Further experiments with realistic basic states 

Although the four experiments in the previous section provide some useful insights for the 

mechanisms of the local and teleconnection responses to tropical heating anomalies, the solid 

body rotation used as the basic state in those experiments is far from being realistic. Therefore, in 

this section, we use our model to further explore how realistic basic states affect the ENSO 

teleconnections to high latitudes. Fig. 6 shows the zonally averaged basic states for December-

February (DJF) and June-August (JJA) obtained by using the stream functions at 250 and 750mb 

from the monthly NCAR-NCEP reanalysis (Kalnay et al. 1996). The basic states are zonally 

averaged only for the longitude band of 120oE - 100oW to focus on the ENSO teleconnections 

over the Pacific regions.  

As summarized in Table 2, two model experiments are carried out using the zonally averaged 

basic states for DJF (Case-5) and JJA (Case-6) while keeping the model parameter values and 

the heating anomaly identical to the previous experiments. Fig. 7 shows the barotropic stream 

function and rotational wind anomalies for (a) Case-5 and (b) Case-6. The model solutions for 

these two cases are very different from those of the previous experiments in which a solid body 

rotation is used as the basic states. In particular, it is clear that the observed basic states (zonally 

averaged) can host robust ENSO teleconnections in the winter hemisphere, but not in the 

summer hemisphere. 
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The subtropical jet is more intense in the winter hemisphere than in the summer hemisphere 

(e.g., Peixoto and Oort 1992) as are both the vertical shear and the barotropic component of 

background wind (Fig. 6). It was shown above that barotropic wind anomalies near the heating 

source depend on vertical background shear, while the radiation of barotropic signals to high 

latitudes requires barotropic background flow. Therefore, one may argue that the vertical shear 

and barotropic wind of the subtropical jet in the summer hemisphere are too weak to produce 

robust ENSO teleconnections into the summer hemisphere (Webster 1981).  

In addition, however, the subtropical jet location differs between hemispheres: the core is 

around 30o latitude in the winter hemisphere, and 45 o in the summer hemisphere (Peixoto and 

Oort 1992). Therefore, both the vertical shear and barotropic background wind have their 

maxima migrating within the latitude band of 30o - 45o as shown in Fig. 6. Since the ENSO-

induced baroclinic anomalies are largely confined within 30oS-30oN regardless of season 

summer-hemisphere baroclinic anomalies don’t overlap with vertical background shear to 

generate strong barotropic anomalies near the heating source, and what weak anomalies do exist 

don’t overlap with the barotropic background wind to radiate barotropic teleconnections. 

In short, two factors (the amplitude and latitudinal position of the subtropical jet) could 

explain why the ENSO teleconnections are enhanced in the winter hemisphere and almost absent 

in the summer hemisphere (Fig. 7). Is the summer hemispheric subtropical jet too weak, or too 

far from the heating latitude? To answer this question, we perform four model experiments as 

summarized in Table 3. In these experiments, the background states are idealized using a 

Gaussian function: 



( ) ( )
⎥
⎥
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⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

20
expˆ,ˆ, o

o
oo UUUU θθ .                                           (28) 

As shown in Fig. 8, the background flow for Case-7 ( oU =30 ms-1; =-15 ms-1; oÛ oθ =30oN) 

represents that of the winter hemisphere (i.e., DJF in the northern hemisphere), whereas the 

background flow for Case-10 ( oU =20 ms-1; =-10 ms-1; oÛ oθ =45oN) represents that of the 

summer hemisphere (i.e., JJA in the southern hemisphere). The background flow for Case-8 is 

identical to that of the Case-10 (summer hemispheric condition) except that it is centered at 

oθ =30oN, whereas the background flow for Case-9 is identical to that of the Case-7 (winter 

hemispheric condition) except that it is centered at oθ =45oN.  

Figure 9 shows the barotropic stream function and rotational wind anomalies for (a) Case-7, 

(b) Case-8 and (c) Case-9. The model solutions for the Case-7 capture reasonably well the 

barotropic teleconnections into the winter hemisphere shown in Fig. 7. More importantly, when 

the amplitude of background flow is reduced to that of the summer hemisphere (Case-8), 

barotropic wind anomalies are still excited and transmitted to high latitudes. The amplitude and 

wavelength of the barotropic flow anomalies are smaller in Case-8 than in Case-7 because the 

barotropic background wind is weaker in Case-8 (see (25) for why the wavelength should 

decrease as U  decreases). Nevertheless, this model result suggests that the summer hemispheric 

background flow is strong enough to host barotropic stationary Rossby waves. On the other 

hand, almost no barotropic signals are generated in the Case-9 although the background flow in 

this case is as strong as that of the winter hemisphere (Case-7). It is apparent that the vertical 

background shear in this case is centered too far off from the tropics to interact with the heat-

driven baroclinic anomalies, which are confined in the tropics, and thus barotropic flow 
 18
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anomalies are not generated. Case-10 is not shown because almost no barotropic signals are 

generated in that case. 

In summary, our model results suggest that the ENSO teleconnections are enhanced in the 

winter hemisphere mainly because the summer hemispheric subtropical jet is too far from the 

heating source. However, if the heating source is specified in the vicinity of the jet, stationary 

Rossby waves can be still excited in the summer hemisphere. One example involving such waves 

is the East Asian monsoon in boreal summer: Sardeshmukh and Hoskins (1988) showed that 

diabatic heating (centered around 110oE and 20oN) associated with the East Asian summer 

monsoon can generate stationary Rossby waves spanning the entire Northern hemisphere.  

Another example is the summer onset of the Atlantic warm pool (AWP) over the Gulf of 

Mexico and Caribbean Sea (Wang and Enfield 2001). Wang et al. (2007) showed that the 

summer onset of the AWP forces a classical Gill-type response in the troposphere. Since SST 

over the AWP is maximized around 90oW and 25oN in JJA, our model results suggest that AWP-

induced diabatic heating should trigger teleconnections into high latitudes. Figures 10a and 11a 

show the baroclinic and barotropic stream function anomalies in JJA reproduced from the NCAR 

Community Atmospheric Model (CAM3) experiments of Wang et al. (2007). These plots show 

the difference between CAM3 ensemble runs with and without the AWP, representing the net 

impact by the summer onset of the AWP. As expected, a Gill-type baroclinic response (Wang et 

al. 2007) interacts with the vertical background shear to force barotropic flow anomalies near the 

heating source. Then, the barotropic background wind in JJA allows these barotropic stationary 

Rossby waves to emanate from the AWP region to the high latitudes (Fig. 11a). We attempt to 

replicate these CAM3 results of Wang et al. (2007) by forcing our model with an idealized 

heating source specified over the AWP region. The heating source is the same as (24) except that 
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θ is now replaced with θ - 25o and λo is set to 90oW. The JJA basic state is obtained by using the 

stream functions at 250 and 750mb from the monthly NCAR-NCEP reanalysis - the basic states 

are not zonally averaged in this case. As shown in Fig. 10b and Fig. 11b, our simple model 

reasonably well simulates the CAM3 results over the North Atlantic regions, confirming that the 

summer onset of the AWP may have a remote influence on the North American and European 

summer climate and also on the air-sea interaction over the high-latitude North Atlantic. We 

repeated the same model experiment but with the zonally averaged (over 90oW-0o) JJA basic 

states, and found very similar model solutions (not shown). 

 

5. Summary and discussion 

The main objective of this study was to build, test, and document a minimal complexity 

model capable of simulating both the local and teleconnection responses to tropical heating 

anomalies. A two-mode (barotropic and baroclinic) model was shown to capture three 

fundamental dynamic processes: 1) a heat-induced baroclinic mode as described by the Matsuno-

Gill model (Gill 1980); 2) a barotropic Rossby wave source resulting from conversion of the 

heat-induced baroclinic mode into barotropic anomalies; and 3) barotropic teleconnections to 

high latitudes, as in the barotropic stationary wave model of Branstator (1983). Solutions 

linearized about some idealized and realistic basic states showed that background vertical wind 

shear plays an important role in converting energy from the heat-induced baroclinic flow 

anomalies into barotropic motions near the heating source, consistent with the findings of 

Kasahara and Silva Dias (1986) and Wang and Xie (1996). These barotropic flow anomalies in 

turn interact with the depth-independent background westerly wind to transmit the barotropic 
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signals to high latitudes and other ocean basins. Both baroclinic and barotropic background wind 

fields are therefore required for tropical heating to radiate barotropic teleconnections to high 

latitudes.  

We also found that the baroclinic solution components are confined within the tropics and 

largely insensitive to the background wind fields. This result suggests that the feedback from 

barotropic to baroclinic motions is weak. Based on the dispersion relationship for baroclinic 

Rossby wave, baroclinic Rossby waves propagate too slowly to become stationary in middle and 

high latitudes. Based on these results, we conclude that the original Matsuno-Gill model largely 

captures the heat-induced baroclinic response, provided that the parameter values used in this 

study are realistic. 

In the tropics, the heat-induced barotropic response has the form of an anticyclonic vortex 

pair to the north and south of the heating source. When superposed on the heat-induced 

baroclinic response, this opposes the baroclinic cyclonic vortex pair in the lower troposphere and 

reinforces the anticyclonic vortex pair in the upper level. This appears to explain why El Niño is 

associated with a strong anticyclone pair in the upper troposphere and a relatively weak cyclone 

pair in the lower troposphere.  

When the model is linearized about realistic basic states for boreal winter (DJF) and summer 

(JJA), it successfully reproduces the hemispheric asymmetry of ENSO teleconnections. Further 

experiments suggest that the ENSO teleconnections are enhanced in the winter hemisphere 

mainly because the summer hemispheric subtropical jet is too far from the heating source. Still, 

the summer hemispheric subtropical jet can host robust stationary Rossby waves if heating 

occurs in the vicinity of the jet. Based on this finding and the previous AGCM study by Wang et 
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al. (2007), we show that the summer latent heating over the AWP can have a profound impact on 

the North American and European summer climate. 

Although not shown here, we also forced the model with an observed El Niño heating 

anomaly in realistic DJF background wind fields. The barotropic cyclonic wind anomalies over 

the North Pacific and the Walker-circulation anomalies over the equatorial Pacific were 

reasonably well reproduced (not shown). However, the model also produces some unrealistic 

signals, such as a too-strong subsidence over the western equatorial Pacific and the Amazon 

regions. These errors are partly due to the oversimplifications in the horizontal and vertical 

structure of the diabatic heating anomaly and background mean flow (Sardeshmukh and Hoskins 

1988; Ting and Sardeshmukh 1993). It is also important to point that our model does not include 

the vorticity flux by transient synoptic eddies, which is known to be important in the 

maintenance of the mid-latitude response to ENSO (Kok and Opsteegh 1985; Held et al. 1989). 

Additionally, it must be recognized that the heat-induced mid-latitude response does contain a 

baroclinic component, although in much smaller amplitude than in the tropics. Thus, it is 

possible that the weak temperature gradient approximation, which is used in deriving the 

equation for baroclinic geopotential, may incorrectly simulate the baroclinic response in mid-

latitudes. Yet another source of model errors originates from the lack of a frictional boundary 

layer, where Ekman divergence due to the baroclinic cyclones and anticyclones in the lower 

level can excite a barotropic response. Explicit considerations of these missing mechanisms and 

further model improvements are left for future study.  

Although the current model has difficulty in reproducing some of the observed features 

associated with El Niño, it seems the simplest system that can explain both the local and 

teleconnection responses to tropical heating anomalies, and thus may be a useful addition to the 
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model hierarchy, as a tool to increase our understanding of heat-induced global atmospheric 

circulations. Potential applications include a coupling of this model with a reduced gravity ocean 

model, to extend the El Niño model of Zebiak and Cane (1987) in latitude. Such a coupled model 

may help elucidate global atmosphere-ocean dynamic processes associated with El Niño, beyond 

traditional tropical atmosphere-ocean feedbacks. 

 

Acknowledgements. We would like to thank Grant Branstator at NCAR for kindly providing us 

with his barotropic vorticity equation solver, which was very helpful for developing the 

numerical code for our work. We also wish to thank David Enfield, David Straus, and two 

anonymous reviewers for thoughtful comments and suggestions, which led to a significant 

improvement of the paper. This work was supported by a grant from National Oceanic and 

Atmospheric Administration (NOAA) Climate Program Office and by the base funding of 

NOAA Atlantic Oceanographic and Meteorological Laboratory (AOML).  The findings and 

conclusions in this report are those of the authors and do not necessarily represent the views of 

the funding agency. 

 

References 

Adams, J. C. and P. N. Swarztrauber, 1999: SPHEREPACK 3.0: A model development facility. 
Mon. Wea. Rev., 127, 1872-1878. 

Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional 
and zonal structure. J. Atmos. Sci., 40, 1689-1708. 

Branstator, G., 1990: Low-frequency patterns induced by stationary waves. J. Atmos. Sci., 47, 
629-648. 

Bourke, W., 1972: An efficient, on-level, primitive equation spectral model. Mon. Wea. Rev., 
100, 683-689. 

Davey, M. K. and A. E. Gill, 1987: Experiments on tropical circulation with a simple moist 
model. Quart. J. Roy. Meteor. Soc., 113, 1237-1269.  



 24

Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. 
Meteor. Soc., 106, 447–462. 

Grose, W. L. and B. J. Hoskins, 1979: On the influence of orography on large-scale atmospheric 
flow. J. Atmos. Sci., 36, 223-234. 

Held, I. M. and M. J. Suarez, 1978: A two-level primitive equation atmospheric model designed 
for climatic sensitivity experiments. J. Atmos. Sci., 35, 206-229.  

Held, I. M., S. W. Lyons, and S. Nigam, 1989: Transients and the extratropical response to El 
Niño. J. Atmos. Sci., 46, 163–174. 

Holton, J. R., 1992: An introduction to dynamic meteorology. Academic Press, 3rd Ed. San 
Diego, 511 pp. 

Horel, J. D. and J. M. Wallace, 1981. Planetary-scale atmospheric phenomena associated with 
the South Oscillation. Mon. Wea. Rev., 109, 813-829.  

Hoskins, B. J. and A. J. Simmons, 1975: A multi-layer spectral model and the semi-implicit 
method. Quart. J. Roy. Meteor. Soc., 103, 553-567.  

Hoskins, B. J. and D. J. Karoly, 1981: The steady linear response of a spherical atmospheric 
thermal and orographic forcing. J. Atmos. Sci., 38, 1179-1196. 

Jin, F.-F. and B. J. Hoskins, 1995: The direct response to tropical heating in a baroclinic 
atmosphere. J. Atmos. Sci., 52, 307-319. 

Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. 
White, J. Woollen, Y. Zhu, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K. C. Mo, C. 
Ropelewski, J. Wang, Leetmaa, R. Reynolds, R. Jenne, and D. Joseph, 1996: The 
NCEP/NCAR 40-year Reanalysis Project. Bull. American Meteorol. Soc., 77, 437-471. 

Kasahara, A. and P. L. da Silva Dias, 1986: Response of planetary waves to stationary tropical 
heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci., 43, 1893-
1911.  

Kleeman, R., 1989: A modeling study of the effect of the Andes on the summertime circulation 
of tropical South America. J. Atmos. Sci., 46, 3344-3362.  

Klein, S. A., B. J. Soden and N.-C. Lau, 1999: Remote sea surface temperature variations during 
ENSO: evidence for a tropical atmospheric bridge. J. Climate, 12, 917-932. 

Kok, C. J., and J. D. Opsteegh, 1985: On the possible causes of anomalies in seasonal mean 
circulation patterns during the 1982–83 El Niño event. J. Atmos. Sci., 42, 677–694.  

Lau, N-C, 1981: A diagnostic study of recurrent meteorological anomalies appearing in a 15-
year simulation with a GFDL general circulation model. Mon. Wea. Rev., 109,  2287- 2311. 

Lin J. L., B. E. Mapes, and W. Han, 2008: What are the sources of mechanical dampings in 
Matsuno-Gill models? J. Climate, 21, 165-179. 

Matsuno, T, 1966: Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 44, 
25-43. 

Navarra, A., W. F. Stern, and K. Miyakoda, 1994: Reduction of the Gibbs oscillation in spectral 
model simulations. J. Climate, 7, 1169-1183.  

Neelin, J. D., 1988: A simple model for surface stress and low-level flow in the tropical 
atmosphere driven by prescribed heating. Quart. J. Roy. Meteor. Soc., 114, 747-770.  

Pexoto, J. P. and A. H. Oort, 1992: Physics of climate. American Institute of Physics, New York, 
520p.  

Robert, A. J., 1966: The integration of a low order spectral form of primitive meteorological 
equations. J. Meteor. Soc. Japan, 44, 237-245. 



 25

Sardeshmukh P. D. and B. J. Hoskins, 1988: The generation of global rotational flow by steady 
idealized tropical divergence. J. Atmos. Sci., 45, 1228-1251.  

Schopf, P. S. And M. J. Suarez, 1988: Vacillations in a coupled ocean-atmosphere model. J. 
Atmos. Sci., 45, 549-566. 

Straus, D. M., S. Corti and F. Molteni, 2007: Circulation regimes: chaotic variability versus SST-
forced predictability. J. Climate, 20, 2251-2272. 

Ting, M. and I. M. Held, 1990: The stationary wave response to tropical SST anomaly in an 
idealized GCM. J. Atmos. Sci., 47, 2546-2566.  

Ting, M. and P. D. Sardeshmuku, 1993: Factors determining the extratropical response to 
equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907-918. 

Wallace, J. M. and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during 
the northern hemispheric winter. Mon. Wea. Rev., 109, 784-812.  

Wang, B. and T. Li, 1993: A simple tropical atmosphere model of relevance to short-term 
climate variastions. J. Atmos. Sci., 50, 260-284. 

Wang, B. and X. Xie, 1996: Low-frequency equatorial waves in vertically sheared zonal flow. 
Part I: stable waves. J. Atmos. Sci., 53, 449-467. 

Wang, C., and D. B. Enfield, 2001: The tropical Western Hemisphere warm pool.  Geophys. Res. 
Lett., 28, 1635-1638. 

Wang, C., S.-K. Lee, and D. B. Enfield, 2007: Impact of the Atlantic warm pool on the summer 
climate of the Western Hemisphere. J. Climate, 20, 5021-5040. 

Watanabe, M. and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: 
a positive feedback. Quart. J. Roy. Meteor. Soc., 126, 3343-3369. 

Watanabe, M. and F.-F. Jin, 2003: A moist linear baroclinic model: coupled dynamical-
convective response to El Niño. J. Climate, 16, 1121-1139. 

Webster, P. J., 1981: Mechanisms determining the atmospheric response to sea surface 
temperature anomalies. J. Atmos. Sci., 38, 554-571. 

Zebiak, S., 1986: Atmospheric convergence feedback in a simple model for El Niño. Mon. Wea. 
Rev., 114, 1263-1271. 

Zebiak, S. And M. A. Cane, 1987: A model El Niño-Southern Oscillation. Mon. Wea. Rev. 115, 
2262-2278. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1. Prescribed idealized basic states for Case-1, 2, 3, and 4 
Experiment Description  Background zonal wind speed (m s-1) 
Case-1 No background flow U = 0          ; U =  0 ˆ

Case-2 Barotropic background flow U = 25 cosθ; U =  0 ˆ

Case-3 Baroclinic background flow U = 0          ; U = -15 cosθ ˆ

Case-4 Barotropic and baroclinic background flow = 25 cosθ; U = -15 cosθ ˆU
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Table 2. Prescribed realistic basic states for Case-5 and 6 (NCEP-NCAR reanalysis) as shown in 
Fig. 6.   
Experiment Description  
Case-5 Background zonal wind of DJF averaged over 120oE-100oW 
Case-6 Background zonal wind of JJA averaged over 120oE-100oW  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 3. Prescribed idealized basic states for Case-7, 8, 9, and 10 as shown in Fig. 8.  
Experiment Description  Background zonal wind speed (m s-1) and oθ

Case-7 Idealized basic state for DJF oU = 30; = -15; oÛ oθ = 30oN 

Case-8 ,  for JJA and oÛ oθ for DJF 

 28

oU oU = 20; = -10; oÛ oθ = 30oN 

Case-9 ,  for DJF and oÛ oθ for JJA oU oU = 30; = -15; oÛ oθ = 45oN 

Case-10 Idealized basic state for JJA = 20; = -10; oÛ oθ = 45oN oU
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Figure Captions 
Figure 1. Baroclinic geopotential and wind (vector plot) anomalies for (a) Case-1 (no 
background flow) and (b) Case-2 (barotropic background flow). Negative contour lines are 
dashed. Contour interval is 50 m2 s-2 for both (a) and (b).  

Figure 2. Same as Figure 1, but for baroclinic stream function and rotational wind (vector plot) 
anomalies. Contour interval is 106 m2 s-1 for both (a) and (b).  

Figure 3. Same as Figure 1, but for baroclinic velocity potential and divergent wind (vector plot) 
anomalies. Contour interval is 106 m2 s-1 for both (a) and (b). 

Figure 4. Barotropic stream function and wind (vector plot) anomalies for (a) Case-3 (baroclinic 
background flow) and (b) Case-4 (barotropic and baroclinic background flow). Negative contour 
lines are dashed. Contour interval is 106 m2 s-1 for both (a) and (b). 

Figure 5. Case-3 (baroclinic background flow): Stream function and rotational wind (vector plot) 
for (a) the upper level (250 mb) and (b) the lower level (750 mb). Negative contour lines are 
dashed. Contour interval is 1.5×106 m2 s-1 for both (a) and (b).  

Figure 6. Climatological boreal winter (DJF: solid lines) and summer (JJA: dashed lines) zonal 
winds for (a) barotropic and (b) baroclinic components, both zonally averaged for the longitude 
band of 120oE-100oW and obtained from the NCAR-NCEP reanalysis.  

Figure 7. Barotropic stream function and wind (vector plot) anomalies for (a) Case-5 (DJF) and 
(b) Case-6 (JJA). Negative contour lines are dashed. Contour interval is 106 m2 s-1 for both (a) 
and (b). 

Figure 8. Idealized zonal background winds for Case-7, Case-8, Case-9 and Case-10: (a) 
barotropic and (b) baroclinic components.  

Figure 9. Barotropic stream function and wind (vector plot) anomalies for (a) Case-7, (b) Case-8, 
and (c) Case-9. Negative contour lines are dashed. Contour interval is 106 m2 s-1 for all cases. 

Figure 10. Baroclinic stream function: (a) the difference between the CAM3 runs with and 
without AWP in JJA reproduced from Wang et al. (2007); (b) Case-11 (AWP). Contour interval 
is 1.0×106 m2 s-1 for (a) and 2.0×106 m2 s-1 for (b). 

Figure 11. Barotropic stream function: (a) the difference between the CAM3 runs with and 
without AWP in JJA reproduced from Wang et al. (2007); (b) Case-11 (AWP). Contour interval 
is 1.0×106 m2 s-1 for (a) and 0.5×106 m2 s-1 for (b). 
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Figure 1. Baroclinic geopotential and wind (vector plot) anomalies for (a) Case-1 and (b) Case-2. 
Negative contour lines are dashed. Contour interval is 50 m2 s-2 for both (a) and (b). 
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Figure 2. Same as Figure 1, but for baroclinic stream function and rotational wind (vector plot) 
anomalies. Contour interval is 106 m2 s-1 for both (a) and (b). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Same as Figure 1, but for baroclinic velocity potential and divergent wind (vector plot) 
anomalies. Contour interval is 106 m2 s-1 for both (a) and (b). 
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Figure 4. Barotropic stream function and wind (vector plot) anomalies for (a) Case-3 and (b) 
Case-4. Negative contour lines are dashed. Contour interval is 106 m2 s-1 for both (a) and (b). 
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Figure 5. Case-3: Stream function and rotational wind (vector plot) for (a) the upper level (250 
mb) and (b) the lower level (750 mb). Negative contour lines are dashed. Contour interval is 
1.5×106 m2 s-1 for both (a) and (b). 
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Figure 6. Climatological boreal winter (DJF: solid lines) and summer (JJA: dashed lines) zonal 
winds for (a) barotropic and (b) baroclinic components, both zonally averaged for the longitude 
band of 120oE-100oW and obtained from the NCAR-NCEP reanalysis. 
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Figure 7. Barotropic stream function and wind (vector plot) anomalies for (a) Case-5 (DJF) and 
(b) Case-6 (JJA). Negative contour lines are dashed. Contour interval is 106 m2 s-1 for both (a) 
and (b). 
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Figure 8. Idealized zonal background winds for Case-7, Case-8, Case-9 and Case-10: (a) 
barotropic and (b) baroclinic components. 
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Figure 9. Barotropic stream function and wind (vector plot) anomalies for (a) Case-7, (b) Case-8, 
and (c) Case-9. Negative contour lines are dashed. Contour interval is 106 m2 s-1 for all cases. 
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Figure 10. Baroclinic stream function: (a) the difference between the CAM3 runs with and 
without AWP in JJA reproduced from Wang et al. (2007); (b) Case-11 (AWP). Contour interval 
is 1.0×106 m2 s-1 for (a) and 2.0×106 m2 s-1 for (b). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11. Barotropic stream function: (a) the difference between the CAM3 runs with and 
without AWP in JJA reproduced from Wang et al. (2007); (b) Case-11 (AWP). Contour interval 
is 1.0×106 m2 s-1 for (a) and 0.5×106 m2 s-1 for (b). 
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